Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pituitary ; 26(5): 597-610, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37642928

ABSTRACT

PURPOSE: Cushing's disease (CD) results from autonomous adrenocorticotropic hormone (ACTH) secretion by corticotroph adenomas, leading to excessive cortisol production, ultimately affecting morbidity and mortality. Pasireotide is the only FDA approved tumor directed treatment for CD, but it is effective in only about 25% of patients, and is associated with a high rate of hyperglycemia. Neuromedin B (NMB), a member of the bombesin-like peptide family, regulates endocrine secretion and cell proliferation. Here, we assessed NMB and NMB receptor (NMBR) expression in human corticotroph adenomas and the effects of NMBR antagonist PD168368 on murine and human corticotroph tumors. METHODS: To investigate NMB and NMBR expression, real-time qPCR and immunostaining on human pathological specimens of corticotroph, non-functional and somatotroph adenomas were performed. The effects of PD168368 on hormone secretion and cell proliferation were studied in vitro, in vivo and in seven patient-derived corticotroph adenoma cells. NMB and NMBR were expressed in higher extent in human corticotroph adenomas compared with non-functional or somatotroph adenomas. RESULTS: In murine AtT-20 cells, PD168368 reduced proopiomelanocortin (Pomc) mRNA/protein expression and ACTH secretion as well as cell proliferation. In mice with tumor xenografts, tumor growth, ACTH and corticosterone were downregulated by PD168368. In patient-derived adenoma cells, PD168368 reduced POMC mRNA expression in four out of seven cases and ACTH secretion in two out of five cases. A PD168368-mediated cyclin E suppression was also identified in AtT-20 and patient-derived cells. CONCLUSION: NMBR antagonist represents a potential treatment for CD and its effect may be mediated by cyclin E suppression.


Subject(s)
ACTH-Secreting Pituitary Adenoma , Adenoma , Growth Hormone-Secreting Pituitary Adenoma , Pituitary ACTH Hypersecretion , Animals , Humans , Mice , ACTH-Secreting Pituitary Adenoma/drug therapy , ACTH-Secreting Pituitary Adenoma/metabolism , Adenoma/metabolism , Adrenocorticotropic Hormone/metabolism , Cyclin E , Pituitary ACTH Hypersecretion/drug therapy , Pituitary ACTH Hypersecretion/genetics , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Receptors, Bombesin/metabolism , Receptors, G-Protein-Coupled , RNA, Messenger/analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
J Diabetes Res ; 2022: 5603864, 2022.
Article in English | MEDLINE | ID: mdl-35097130

ABSTRACT

Incretins reduce glycemic variability (GV) in patients with type 2 diabetes, but it is unknown whether switching from a combination of basal insulin and a DPP-4 inhibitor to insulin degludec/liraglutide (IDegLira) improves GV. We performed an exploratory prospective observational study to compare the effect of IDegLira and the combination on GV. We recruited hospitalized patients with type 2 diabetes who had stable glycemic control with insulin degludec (≤16 units/day) and taking a DPP-4 inhibitor. GV was analyzed using continuous glucose monitoring (CGM) before and after switching the medication to IDegLira. The principal endpoint was the change in mean amplitude of glycemic excursions (MAGE). Other indices of GV and CGM parameters were analyzed as the secondary endpoints. Fifteen participants were enrolled and 12 completed the study. In these participants, the DPP-4 inhibitor and insulin degludec were discontinued, and the equivalent dose of IDegLira was commenced. Switching to IDegLira significantly improved MAGE from 74.9 (60.3, 97.7) mg/dL to 64.8 (52.0, 78.2) mg/dL (P < 0.05), as well as other indices of GV and 24-hour mean blood glucose concentration. Analysis of the ambulatory glucose profile showed marked reductions in postprandial glucose concentration. Nocturnal glucose concentration was similar under the two treatment regimens. IDegLira improved GV as well as the mean and the postprandial glucose concentration by switching from insulin degludec plus DPP-4 inhibitor combination. IDegLira might be beneficial for patients being treated with low-dose basal insulin.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Hypoglycemic Agents/therapeutic use , Insulin, Long-Acting/therapeutic use , Liraglutide/therapeutic use , Adult , Aged , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 2/blood , Drug Substitution , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Prospective Studies , Treatment Outcome
3.
Endocr J ; 69(5): 495-509, 2022 May 30.
Article in English | MEDLINE | ID: mdl-34819409

ABSTRACT

Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are well-established means of improving glycemia and preventing cardio-renal events in patients with type 2 diabetes. However, their efficacy and safety have yet to be fully characterized in patients with type 1 diabetes (T1D). We studied patients with T1D who regularly attended one of five diabetes centers and treated with an SGLT2i (ipragliflozin or dapagliflozin) for >52 weeks, and the changes in HbA1c, body mass, insulin dose, and laboratory data were retrospectively evaluated and adverse events (AEs) recorded during December 2018 to April 2021. A total of 216 patients with T1D were enrolled during the period. Of these, 42 were excluded owing to short treatment periods and 15 discontinued their SGLT2i. The mean changes in glycated hemoglobin (HbA1c), body mass, and insulin dose were -0.4%, -2.1 kg, and -9.0%, respectively. The change in HbA1c was closely associated with the baseline HbA1c (p < 0.001), but not with the baseline body mass or renal function. The basal and bolus insulin doses decreased by 18.2% and 12.6%, respectively, in participants with a baseline HbA1c <8%. The most frequent AE was genital infection (2.8%), followed by diabetic ketoacidosis (DKA; 1.4%). None of the participants experienced severe hypoglycemic events. In conclusion, the administration of an SGLT2i in addition to intensive insulin treatment in patients with T1D improves glycemic control and body mass, without increasing the incidence of hypoglycemia or DKA.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Ketoacidosis , Sodium-Glucose Transporter 2 Inhibitors , Blood Glucose , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetic Ketoacidosis/chemically induced , Diabetic Ketoacidosis/epidemiology , Diabetic Ketoacidosis/prevention & control , Glycated Hemoglobin/analysis , Humans , Hypoglycemic Agents/adverse effects , Insulin/therapeutic use , Retrospective Studies , Sodium , Sodium-Glucose Transporter 2 Inhibitors/adverse effects
5.
Syst Appl Microbiol ; 38(2): 104-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25481042

ABSTRACT

During the process of identifying a Gram-negative coccobacillus isolated from a human clinical specimen, we found that the isolate's 16S rRNA gene had very close sequence identity with that of a variant Porphyromonas isolated from polymicrobial infections in the central bearded dragon, a species of lizard [2]. The 16S rRNA gene sequences of the human isolate and of six isolates from lizards were nearly identical (99.9-100%). Phylogenetic analysis placed all of these isolates in a single phylogenetic cluster well separated from other species in the genus Porphyromonas. The closest species was Porphyromonas catoniae with 90.7-90.9% sequence identity, although there was less than 6% DNA similarity between the P. catoniae type strain and our representative isolates from lizards (PAGU 1787(T)) and human (PAGU 1776). These isolates could grow under anaerobic or microaerobic conditions (6% O2 atmosphere). The isolates were positive for catalase and very strong ß-hemolytic activity, but did not show black or brown pigmentation. Biochemically, the isolates could be differentiated from closely related species by pyroglutamic acid arylamidase and glycine arylamidase activity, and some others. The fermentation products mainly included succinic acid and propionic acid. The major fatty acids detected in cells of the isolates were iso-C15:0, anteiso-C15:0, and 3OH-iso-C17:0. The G+C content was 43.0 ± 0.62 mol%. The species name Porphyromonas pogonae sp. nov. is proposed for these isolates with the type strain of PAGU 1787(T) (=MI 10-1288(T)=JCM 19732(T)=ATCC BAA-2643(T)).


Subject(s)
Bacteroidaceae Infections/microbiology , Lizards/microbiology , Porphyromonas/classification , Porphyromonas/isolation & purification , Anaerobiosis , Animals , Bacterial Typing Techniques , Base Composition , Catalase/analysis , Cluster Analysis , Cytosol/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Hemolysin Proteins/analysis , Humans , Molecular Sequence Data , Oxygen/toxicity , Phylogeny , Pigments, Biological/metabolism , Porphyromonas/genetics , Porphyromonas/physiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...